Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ACS Infect Dis ; 9(2): 221-238, 2023 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-36606559

RESUMO

Mycobacterium tuberculosis cytochrome bd quinol oxidase (cyt bd), the alternative terminal oxidase of the respiratory chain, has been identified as playing a key role during chronic infection and presents a putative target for the development of novel antitubercular agents. Here, we report confirmation of successful heterologous expression of M. tuberculosis cytochrome bd. The heterologous M. tuberculosis cytochrome bd expression system was used to identify a chemical series of inhibitors based on the 2-aryl-quinolone pharmacophore. Cytochrome bd inhibitors displayed modest efficacy in M. tuberculosis growth suppression assays together with a bacteriostatic phenotype in time-kill curve assays. Significantly, however, inhibitor combinations containing our front-runner cyt bd inhibitor CK-2-63 with either cyt bcc-aa3 inhibitors (e.g., Q203) and/or adenosine triphosphate (ATP) synthase inhibitors (e.g., bedaquiline) displayed enhanced efficacy with respect to the reduction of mycobacterium oxygen consumption, growth suppression, and in vitro sterilization kinetics. In vivo combinations of Q203 and CK-2-63 resulted in a modest lowering of lung burden compared to treatment with Q203 alone. The reduced efficacy in the in vivo experiments compared to in vitro experiments was shown to be a result of high plasma protein binding and a low unbound drug exposure at the target site. While further development is required to improve the tractability of cyt bd inhibitors for clinical evaluation, these data support the approach of using small-molecule inhibitors to target multiple components of the branched respiratory chain of M. tuberculosis as a combination strategy to improve therapeutic and pharmacokinetic/pharmacodynamic (PK/PD) indices related to efficacy.


Assuntos
Antituberculosos , Mycobacterium tuberculosis , Quinolonas , Antituberculosos/farmacologia , Citocromos/antagonistas & inibidores , Complexo IV da Cadeia de Transporte de Elétrons/antagonistas & inibidores , Mycobacterium tuberculosis/efeitos dos fármacos , Quinolonas/farmacologia
2.
Nature ; 565(7738): 213-217, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30626943

RESUMO

Metal-organic frameworks (MOFs) are crystalline synthetic porous materials formed by binding organic linkers to metal nodes: they can be either rigid1,2 or flexible3. Zeolites and rigid MOFs have widespread applications in sorption, separation and catalysis that arise from their ability to control the arrangement and chemistry of guest molecules in their pores via the shape and functionality of their internal surface, defined by their chemistry and structure4,5. Their structures correspond to an energy landscape with a single, albeit highly functional, energy minimum. By contrast, proteins function by navigating between multiple metastable structures using bond rotations of the polypeptide6,7, where each structure lies in one of the minima of a conformational energy landscape and can be selected according to the chemistry of the molecules that interact with the protein. These structural changes are realized through the mechanisms of conformational selection (where a higher-energy minimum characteristic of the protein is stabilized by small-molecule binding) and induced fit (where a small molecule imposes a structure on the protein that is not a minimum in the absence of that molecule)8. Here we show that rotation about covalent bonds in a peptide linker can change a flexible MOF to afford nine distinct crystal structures, revealing a conformational energy landscape that is characterized by multiple structural minima. The uptake of small-molecule guests by the MOF can be chemically triggered by inducing peptide conformational change. This change transforms the material from a minimum on the landscape that is inactive for guest sorption to an active one. Chemical control of the conformation of a flexible organic linker offers a route to modifying the pore geometry and internal surface chemistry and thus the function of open-framework materials.

3.
RSC Adv ; 9(55): 32165-32173, 2019 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-35530783

RESUMO

Sulfotransferases (STs) catalyse the transfer of a sulfonyl group ('sulfation') from the enzyme co-factor 3'-phosphoadenosine 5'-phosphosulfate (PAPS) to a variety of biomolecules. Tyrosine sulfation of proteins and carbohydrate sulfation play a crucial role in many protein-protein interactions and cell signalling pathways in the extracellular matrix. This is catalysed by several membrane-bound STs, including tyrosylprotein sulfotransferase 1 (TPST1) and heparan sulfate 2-O-sulfotransferase (HS2ST1). Recently, involvement of these enzymes and their post-translational modifications in a growing number of disease areas has been reported, including inflammation, cancer and Alzheimer's disease. Despite their growing importance, the development of small molecules to probe the biological effect of TPST and carbohydrate ST inhibition remains in its infancy. We have used a structure-based approach and molecular docking to design a library of adenosine 3',5'-diphosphate (PAP) and PAPS mimetics based upon 2'-deoxyadenosine and using 2'-deoxy-PAP as a benchmark. The use of allyl groups as masked methyl esters was exploited in the synthesis of PAP-mimetics, and click chemistry was employed for the divergent synthesis of a series of PAPS-mimetics. A suite of in vitro assays employing TPST1 and HS2ST, and a kinase counter screen, were used to evaluate inhibitory parameters and relative specificity for the STs.

4.
Biochem J ; 475(15): 2435-2455, 2018 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-29934490

RESUMO

Protein tyrosine sulfation is a post-translational modification best known for regulating extracellular protein-protein interactions. Tyrosine sulfation is catalysed by two Golgi-resident enzymes termed tyrosylprotein sulfotransferases (TPSTs) 1 and 2, which transfer sulfate from the cofactor PAPS (3'-phosphoadenosine 5'-phosphosulfate) to a context-dependent tyrosine in a protein substrate. A lack of quantitative tyrosine sulfation assays has hampered the development of chemical biology approaches for the identification of small-molecule inhibitors of tyrosine sulfation. In the present paper, we describe the development of a non-radioactive mobility-based enzymatic assay for TPST1 and TPST2, through which the tyrosine sulfation of synthetic fluorescent peptides can be rapidly quantified. We exploit ligand binding and inhibitor screens to uncover a susceptibility of TPST1 and TPST2 to different classes of small molecules, including the anti-angiogenic compound suramin and the kinase inhibitor rottlerin. By screening the Published Kinase Inhibitor Set, we identified oxindole-based inhibitors of the Ser/Thr kinase RAF (rapidly accelerated fibrosarcoma) as low-micromolar inhibitors of TPST1 and TPST2. Interestingly, unrelated RAF inhibitors, exemplified by the dual BRAF/VEGFR2 inhibitor RAF265, were also TPST inhibitors in vitro We propose that target-validated protein kinase inhibitors could be repurposed, or redesigned, as more-specific TPST inhibitors to help evaluate the sulfotyrosyl proteome. Finally, we speculate that mechanistic inhibition of cellular tyrosine sulfation might be relevant to some of the phenotypes observed in cells exposed to anionic TPST ligands and RAF protein kinase inhibitors.


Assuntos
Imidazóis/química , Proteínas de Membrana , Peptídeos/química , Proteínas Proto-Oncogênicas B-raf , Piridinas/química , Sulfotransferases , Tirosina/química , Humanos , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/química , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores , Proteínas Proto-Oncogênicas B-raf/química , Sulfotransferases/antagonistas & inibidores , Sulfotransferases/química
5.
Biochem J ; 475(15): 2417-2433, 2018 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-29934491

RESUMO

Sulfation of carbohydrate residues occurs on a variety of glycans destined for secretion, and this modification is essential for efficient matrix-based signal transduction. Heparan sulfate (HS) glycosaminoglycans control physiological functions ranging from blood coagulation to cell proliferation. HS biosynthesis involves membrane-bound Golgi sulfotransferases, including HS 2-O-sulfotransferase (HS2ST), which transfers sulfate from the cofactor PAPS (3'-phosphoadenosine 5'-phosphosulfate) to the 2-O position of α-l-iduronate in the maturing polysaccharide chain. The current lack of simple non-radioactive enzyme assays that can be used to quantify the levels of carbohydrate sulfation hampers kinetic analysis of this process and the discovery of HS2ST inhibitors. In the present paper, we describe a new procedure for thermal shift analysis of purified HS2ST. Using this approach, we quantify HS2ST-catalysed oligosaccharide sulfation using a novel synthetic fluorescent substrate and screen the Published Kinase Inhibitor Set, to evaluate compounds that inhibit catalysis. We report the susceptibility of HS2ST to a variety of cell-permeable compounds in vitro, including polyanionic polar molecules, the protein kinase inhibitor rottlerin and oxindole-based RAF kinase inhibitors. In a related study, published back-to-back with the present study, we demonstrated that tyrosyl protein sulfotranferases are also inhibited by a variety of protein kinase inhibitors. We propose that appropriately validated small-molecule compounds could become new tools for rapid inhibition of glycan (and protein) sulfation in cells, and that protein kinase inhibitors might be repurposed or redesigned for the specific inhibition of HS2ST.


Assuntos
Proteínas Aviárias/química , Heparitina Sulfato/química , Oligossacarídeos/química , Inibidores de Proteínas Quinases/química , Sulfotransferases/química , Quinases raf/antagonistas & inibidores , Animais , Proteínas Aviárias/genética , Galinhas , Heparitina Sulfato/farmacologia , Humanos , Oligossacarídeos/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Sulfotransferases/genética , Suínos , Quinases raf/química
6.
J Med Chem ; 60(9): 3703-3726, 2017 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-28304162

RESUMO

A high-throughput screen (HTS) was undertaken against the respiratory chain dehydrogenase component, NADH:menaquinone oxidoreductase (Ndh) of Mycobacterium tuberculosis (Mtb). The 11000 compounds were selected for the HTS based on the known phenothiazine Ndh inhibitors, trifluoperazine and thioridazine. Combined HTS (11000 compounds) and in-house screening of a limited number of quinolones (50 compounds) identified ∼100 hits and four distinct chemotypes, the most promising of which contained the quinolone core. Subsequent Mtb screening of the complete in-house quinolone library (350 compounds) identified a further ∼90 hits across three quinolone subtemplates. Quinolones containing the amine-based side chain were selected as the pharmacophore for further modification, resulting in metabolically stable quinolones effective against multi drug resistant (MDR) Mtb. The lead compound, 42a (MTC420), displays acceptable antituberculosis activity (Mtb IC50 = 525 nM, Mtb Wayne IC50 = 76 nM, and MDR Mtb patient isolates IC50 = 140 nM) and favorable pharmacokinetic and toxicological profiles.


Assuntos
Mycobacterium tuberculosis/efeitos dos fármacos , Quinolonas/síntese química , Quinolonas/farmacologia , Animais , Células CACO-2 , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Desenho de Fármacos , Transporte de Elétrons/efeitos dos fármacos , Células Hep G2 , Ensaios de Triagem em Larga Escala , Humanos , Testes de Sensibilidade Microbiana , Mycobacterium tuberculosis/metabolismo , Espectroscopia de Prótons por Ressonância Magnética , Quinolonas/química , Quinolonas/farmacocinética , Ratos , Espectrometria de Massas por Ionização por Electrospray , Relação Estrutura-Atividade , Testes de Toxicidade
7.
Sci Rep ; 6: 36777, 2016 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-27857147

RESUMO

The methylerythritol phosphate (MEP) pathway is an essential metabolic pathway found in malaria parasites, but absent in mammals, making it a highly attractive target for the discovery of novel and selective antimalarial therapies. Using high-throughput screening, we have identified 2-phenyl benzo[d]isothiazol-3(2H)-ones as species-selective inhibitors of Plasmodium spp. 2-C-methyl-D-erythritol-4-phosphate cytidyltransferase (IspD), the third catalytic enzyme of the MEP pathway. 2-Phenyl benzo[d]isothiazol-3(2H)-ones display nanomolar inhibitory activity against P. falciparum and P. vivax IspD and prevent the growth of P. falciparum in culture, with EC50 values below 400 nM. In silico modeling, along with enzymatic, genetic and crystallographic studies, have established a mechanism-of-action involving initial non-covalent recognition of inhibitors at the IspD binding site, followed by disulfide bond formation through attack of an active site cysteine residue on the benzo[d]isothiazol-3(2H)-one core. The species-selective inhibitory activity of these small molecules against Plasmodium spp. IspD and cultured parasites suggests they have potential as lead compounds in the pursuit of novel drugs to treat malaria.


Assuntos
Antimaláricos/farmacologia , Benzotiazóis/farmacologia , Colina-Fosfato Citidililtransferase/química , Malária Falciparum/prevenção & controle , Plasmodium falciparum/efeitos dos fármacos , Plasmodium vivax/efeitos dos fármacos , Sítios de Ligação , Domínio Catalítico , Clonagem Molecular , Cristalografia por Raios X , Eritritol/análogos & derivados , Eritritol/química , Concentração Inibidora 50 , Proteínas Recombinantes/química , Fosfatos Açúcares/química
8.
J Med Chem ; 59(6): 2396-409, 2016 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-26908173

RESUMO

Semisynthetic triterpenoids such as bardoxolone methyl (methyl-2-cyano 3,12-dioxooleano-1,9-dien-28-oate; CDDO-Me) (4) are potent inducers of antioxidant and anti-inflammatory signaling pathways, including those regulated by the transcription factor Nrf2. However, the reversible nature of the interaction between triterpenoids and thiols has hindered attempts to identify pharmacologically relevant targets and characterize the sites of interaction. Here, we report a shortened synthesis and SAR profiling of 4, enabling the design of analogues that react irreversibly with model thiols, as well as the model protein glutathione S-transferase P1, in vitro. We show that one of these analogues, CDDO-epoxide (13), is comparable to 4 in terms of cytotoxicity and potency toward Nrf2 in rat hepatoma cells and stably modifies specific cysteine residues (namely, Cys-257, -273, -288, -434, -489, and -613) within Keap1, the major repressor of Nrf2, both in vitro and in living cells. Supported by molecular modeling, these data demonstrate the value of 13 for identifying site(s) of interaction with pharmacologically relevant targets and informing the continuing development of triterpenoids as novel drug candidates.


Assuntos
Anti-Inflamatórios não Esteroides , Antioxidantes , Ácido Oleanólico , Animais , Humanos , Camundongos , Ratos , Proteínas Adaptadoras de Transdução de Sinal/efeitos dos fármacos , Trifosfato de Adenosina/metabolismo , Anti-Inflamatórios não Esteroides/síntese química , Anti-Inflamatórios não Esteroides/farmacologia , Antioxidantes/síntese química , Antioxidantes/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Proteínas do Citoesqueleto/efeitos dos fármacos , Desenho de Fármacos , Glutationa S-Transferase pi/efeitos dos fármacos , Glutationa Transferase/antagonistas & inibidores , Ensaios de Triagem em Larga Escala , Proteína 1 Associada a ECH Semelhante a Kelch , Neoplasias Hepáticas Experimentais/tratamento farmacológico , Modelos Moleculares , Ácido Oleanólico/análogos & derivados , Ácido Oleanólico/síntese química , Ácido Oleanólico/farmacologia , Triterpenos/química , Triterpenos/farmacologia , Fator 2 Relacionado a NF-E2
9.
Chem Res Toxicol ; 27(4): 524-35, 2014 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-24571427

RESUMO

Abacavir (ABC), a nucleoside-analogue reverse transcriptase inhibitor, is associated with severe hypersensitivity reactions that are thought to involve the activation of CD8+ T cells in a HLA-B*57:01-restricted manner. Recent studies have claimed that noncovalent interactions of ABC with HLA-B*57:01 are responsible for the immunological reactions associated with ABC. However, the formation of hemoglobin-ABC aldehyde (ABCA) adducts in patients exposed to ABC suggests that protein conjugation might represent a pathway for antigen formation. To further characterize protein conjugation reactions, we used mass spectrometric methods to define ABCA modifications in patients receiving ABC therapy. ABCA formed a novel intramolecular cross-linking adduct on human serum albumin (HSA) in patients and in vitro via Michael addition, followed by nucleophilic adduction of the aldehyde with a neighboring protein nucleophile. Adducts were detected on Lys159, Lys190, His146, and Cys34 residues in the subdomain IB of HSA. Only a cysteine adduct and a putative cross-linking adduct were detected on glutathione S-transferase Pi (GSTP). These findings reveal that ABC forms novel types of antigens in all patients taking the drug. It is therefore vital that the immunological consequences of such pathways of haptenation are explored in the in vitro models that have been used by various groups to define new mechanisms of drug hypersensitivity exemplified by ABC.


Assuntos
Proteínas Sanguíneas/metabolismo , Didesoxinucleosídeos/metabolismo , Infecções por HIV/tratamento farmacológico , Inibidores da Transcriptase Reversa/metabolismo , Sequência de Aminoácidos , Proteínas Sanguíneas/química , Didesoxinucleosídeos/uso terapêutico , Infecções por HIV/sangue , Humanos , Dados de Sequência Molecular , Inibidores da Transcriptase Reversa/uso terapêutico , Espectrometria de Massas em Tandem
10.
ChemMedChem ; 8(5): 709-18, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23495190

RESUMO

Greater than the sum of its parts: Artemisinins are currently in phase I-II clinical trials against breast, colorectal and non-small-cell lung cancers. In an attempt to offer increased specificity, a series of hybrid artemisinin-polypyrrole minor groove binder conjugates are described. DNA binding/modelling studies and preliminary biological evaluation give insights into their mechanism of action and the potential of this strategy.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/síntese química , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Artemisininas/farmacologia , DNA/efeitos dos fármacos , Plasmodium falciparum/efeitos dos fármacos , Polímeros/farmacologia , Pirróis/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/química , Artemisininas/química , Sítios de Ligação/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , DNA/química , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Células HL-60 , Células HT29 , Humanos , Modelos Moleculares , Conformação Molecular , Simulação de Dinâmica Molecular , Testes de Sensibilidade Parasitária , Polímeros/química , Pirróis/química , Relação Estrutura-Atividade , Termodinâmica
11.
Proc Natl Acad Sci U S A ; 108(38): 15780-5, 2011 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-21900609

RESUMO

Carbon monoxide (CO) is a product of haem metabolism and organisms must evolve strategies to prevent endogenous CO poisoning of haemoproteins. We show that energy costs associated with conformational changes play a key role in preventing irreversible CO binding. AxCYTcp is a member of a family of haem proteins that form stable 5c-NO and 6c-CO complexes but do not form O(2) complexes. Structure of the AxCYTcp-CO complex at 1.25 Å resolution shows that CO binds in two conformations moderated by the extent of displacement of the distal residue Leu16 toward the haem 7-propionate. The presence of two CO conformations is confirmed by cryogenic resonance Raman data. The preferred linear Fe-C-O arrangement (170 ± 8°) is accompanied by a flip of the propionate from the distal to proximal face of the haem. In the second conformation, the Fe-C-O unit is bent (158 ± 8°) with no flip of propionate. The energetic cost of the CO-induced Leu-propionate movements is reflected in a 600 mV (57.9 kJ mol(-1)) decrease in haem potential, a value in good agreement with density functional theory calculations. Substitution of Leu by Ala or Gly (structures determined at 1.03 and 1.04 Å resolutions) resulted in a haem site that binds CO in the linear mode only and where no significant change in redox potential is observed. Remarkably, these variants were isolated as ferrous 6c-CO complexes, attributable to the observed eight orders of magnitude increase in affinity for CO, including an approximately 10,000-fold decrease in the rate of dissociation. These new findings have wide implications for preventing CO poisoning of gas-binding haem proteins.


Assuntos
Proteínas de Bactérias/química , Monóxido de Carbono/química , Citocromos c'/química , Conformação Proteica , Substituição de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação/genética , Monóxido de Carbono/metabolismo , Intoxicação por Monóxido de Carbono/metabolismo , Intoxicação por Monóxido de Carbono/prevenção & controle , Cristalização , Cristalografia por Raios X , Citocromos c'/genética , Citocromos c'/metabolismo , Compostos Ferrosos/química , Compostos Ferrosos/metabolismo , Heme/química , Heme/metabolismo , Humanos , Cinética , Modelos Químicos , Modelos Moleculares , Mutação , Oxirredução , Ligação Proteica , Análise Espectral Raman
12.
J Med Chem ; 54(12): 4119-32, 2011 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-21553812

RESUMO

We report the syntheses and activities of a wide range of thiazolides [viz., 2-hydroxyaroyl-N-(thiazol-2-yl)amides] against hepatitis B virus replication, with QSAR analysis of our results. The prototypical thiazolide, nitazoxanide [2-hydroxybenzoyl-N-(5-nitrothiazol-2-yl)amide, NTZ] 1 is a broad spectrum antiinfective agent effective against anaerobic bacteria, viruses, and parasites. By contrast, 2-hydroxybenzoyl-N-(5-chlorothiazol-2-yl)amide 3 is a novel, potent, and selective inhibitor of hepatitis B replication (EC(50) = 0.33 µm) but is inactive against anaerobes. Several 4'- and 5'-substituted thiazolides show good activity against HBV; by contrast, some related salicyloylanilides show a narrower spectrum of activity. The ADME properties of 3 are similar to 1; viz., the O-acetate is an effective prodrug, and the O-aryl glucuronide is a major metabolite. The QSAR study shows a good correlation of observed EC(90) for intracellular virions with thiazolide structural parameters. Finally we discuss the mechanism of action of thiazolides in relation to the present results.


Assuntos
Amidas/síntese química , Antivirais/síntese química , Vírus da Hepatite B/efeitos dos fármacos , Pró-Fármacos/síntese química , Salicilamidas/síntese química , Tiazóis/síntese química , Amidas/farmacocinética , Amidas/farmacologia , Animais , Antivirais/farmacocinética , Antivirais/farmacologia , Cães , Glucuronídeos/síntese química , Glucuronídeos/farmacocinética , Glucuronídeos/farmacologia , Células Hep G2 , Vírus da Hepatite B/fisiologia , Humanos , Técnicas In Vitro , Pró-Fármacos/farmacocinética , Pró-Fármacos/farmacologia , Relação Quantitativa Estrutura-Atividade , Ratos , Salicilamidas/farmacocinética , Salicilamidas/farmacologia , Tiazóis/farmacocinética , Tiazóis/farmacologia , Vírion/efeitos dos fármacos , Vírion/fisiologia , Replicação Viral
13.
J Med Chem ; 49(4): 1450-4, 2006 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-16480281

RESUMO

We report the preparation and antiparasitic activity in vitro and in vivo of a series of isoflavone derivatives related to genistein. These analogues retain the 5,7-dihydroxyisoflavone core of genistein: direct genistein analogues (2-H isoflavones), 2-carboethoxy isoflavones, and the precursor deoxybenzoins were all evaluated. Excellent in vitro activity against Cryptosporidium parvum was observed for both classes of isoflavones in cell cultures, and the lead compound 19, RM6427, shows high in vivo efficacy against an experimental infection.


Assuntos
Coccidiostáticos/síntese química , Cryptosporidium parvum/efeitos dos fármacos , Isoflavonas/síntese química , Animais , Bovinos , Linhagem Celular Tumoral , Coccidiostáticos/farmacologia , Criptosporidiose/tratamento farmacológico , Cryptosporidium parvum/isolamento & purificação , Feminino , Genisteína/análogos & derivados , Genisteína/síntese química , Genisteína/farmacologia , Gerbillinae , Humanos , Hospedeiro Imunocomprometido , Isoflavonas/farmacologia , Masculino , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA